Master’s thesis

Maintaining alterable planar embeddings
of dynamic graphs

Eva Rotenberg

Supervised by Christian Wulff-Nilsen, DIKU

January 31, 2014

Abstract

We present a data structure for maintaining a planar embedding of
a dynamic plane graph. The graph may be updated with edge deletions
and insertions of edges when it does not violate the embedding. Queries
of vertex pairs return the list of possible places for inserting an edge.
Furthermore, the embedding may be updated with flips that alter the
embedding by swapping the orientation of a subgraph, if the subgraph has
certain properties of being not too well connected to the rest of the graph.
All operations run in time O(Ig(n)?), where n is the number of vertices in
the graph. We do this using top-trees, and using elegant properties about
the dual graph.

Previous best result in this direction was by Italiano et al. [20], a
data structure using topology trees which supports edge deleting, edge
insertion (when compatible with the embedding), and query. They have
a running time of O(lg(n)?) per update, but their construction did not
allow for alterations of the embedding.

A new lower bound for dynamic planarity testing is presented, namely
Q(lg(n)) for the slowest operation. The previous best lower bound was
Q(lg(n)/1glg(n)) by Henzinger et al. [13].

1 Introduction

Given a connected graph G = (V, E), a planar embedding of the graph corre-
sponds to a drawing of the graph on a sphere, such that the vertices are distinct,
and such that no edges cross. Note that a graph can be drawn on the plane,
R2?, if and only if it can be drawn on the sphere, S?. We view embeddings as
equivalent if one can be obtained from the other by stretching and contracting
the sphere as if it were made of some elastic material. More formally, homotopic
embedding functions f : G — S? are considered equivalent. It follows that an
embedding is given by, for each vertex v in G, an ordering of the edges incident
to v. Several planar embeddings of the same graph may exist. We say that a
graph is planar, if some planar embedding of it exists. We use the word plane
graph about a planar graph equipped with a planar embedding. Not all graphs
are planar; e.g. the complete graph with 5 vertices, or the complete bipartite
graph with 3 + 3 vertices.

In this set-up, a dynamic graph is a graph on a given set of vertices, where
edges can be removed or inserted. We will present a data structure for main-
taining a planar embedding of a dynamic graph. In our variant, an edge (u,v)
may only be inserted, if u and v belong to some common face (or separate
connected components), and the insert operation inserts the edge without alter-
ing the rest of the embedding of the graph. The operation delete(u,v) simply
deletes the edge (u,v). The operation query(u,v) returns the (possibly empty)
list of common faces incident to both u and v, and for each such face, corners
of that face incident to u and corners incident to v — a corner corresponds to
specifying where in the ordering of the edges around u or v, a new edge would
fit. Given a face, f, and two corners on the face, ¢, and ¢,, incident to v and

v, respectively, the operation insert(c,, ¢,) inserts an edge between u and v in
the dynamic graph, and embeds it in the specified corners.

Many different embeddings of a planar graph may exist. It may often be
relevant to alter the embedding, in order to be able to insert an edge. We allow
the user to alter the embedding by what we call flips, that is, to turn part of the
graph upside down in the embedding. Of course, the relevance of this depends
on what we want to describe with a dynamic plane graph. If the application
is to describe roads on the ground, flipping orientation would not make much
sense. But if we have the application of graph drawing or chip design in mind,
flips are indeed relevant. In the case of chip design, one wants to make a planar
embedded circuit, which can be thought of as a planar embedded graph.

u

X/.
L

Figure 1: This embedding does not allow for the insertion of the edge (z, 2),
although an embedding exists where (z, z) may be inserted.

An small example of a planar embedded graph is that of Figure 1. The
subgraph consisting of vertices z,y and all their incident edges may be flipped
in the embedding, see Figure 2. In the resulting embedding, the edges = and z
belong to the same face - for the original embedding this was not the case.

~—
Figure 2: We flip part of the graph, and now, the edge (z, z) can be inserted.

An interesting and related problem is that of dynamic planarity testing of
graphs. That is, we have a planar graph, we insert some edge, is the graph
still planar? Knowing that the graph was already planar, only tells us of the
existence of some embedding ¢ of the graph. It could very well be, that ¢ does
not extend to a planar embedding of the new graph after the insertion of an edge,
yet some other planar embedding, ¢, allows for the particular edge insertion.
The operations supported by a data structure for planarity testing of graphs,
are: insert(u,v), which alters the graph by inserting the edge (u,v), delete(u, v)
which alters the graph by deleting such an edge, and query(u, v), which returns

true if the edge (u,v) can be inserted without destroying the planarity of the
graph.

Although the problem of dynamic planarity testing appears technically harder,
it is only relevant when the user has no interest in the actual embedding of the
graph. What we do is to support the user to have control over the embedding
at all times. We tell the user where edges may be inserted, but leave the actual
choice to the user. We also support the user in changing their mind about the
embedding, e.g. by flipping components, so as to make edge insertions possible.

Part of our contribution is a simple duality-based dynamic representation of
a planar embedded graph, maintaining primal and dual trees which share (some
modified version of an) Euler Tour.

We hope that alterable planar embeddings of dynamic graphs can be used
as a stepping stone to polylogarithmic planarity testing of graphs. If a data
structure supports flips in polylogarithmic time, and in order to insert an edge,
at most polylogarithmic many flips are needed, and an algorithm finds those
places to flip in polylogarithmic time, then we have a planarity testing data
structure with polylogarithmic time per operation, which uses our construction
as a sub-routine.

1.1 Previous work

Dynamic graphs have been studied for several decades. Usually, a fully dynamic
graph is a graph that may be updated by the deletion or insertion of an edge,
while decremental or incremental refers to graphs where edges may only be
deleted or inserted, respectively. A dynamic graph can also be one where vertices
may be deleted along with all their incident edges, or some combination of edge-
and vertex updates [31]. One of the fundamental questions about a dynamic
graph is the question of dynamic connectivity in undirected graphs. An update
is an insertion or deletion of an edge, and a query is to ask whether two vertices
belong to the same connected component.

Dynamic Connectivity for graphs was studied by Frederickson [7], who achieved
an update time of O(y/m), where m is the number of edges, and constant query
time. This was done using topology trees to maintain a spanning forest of
the graph. The result of Frederickson was improved using the sparsification
technique of Eppstein, Galil, Italiano, and Nissenzweig [6] to an update time
of O(y/n), where n is the number of vertices. The first data structure with
polylogarithmic update time was that of Henzinger and King [11], namely ex-
pected, amortized O(lg(n)?) and constant query time. Henzinger and King
used Euler Tour trees to maintain information about the spanning forest. A
deterministic data structure for supporting connectivity queries in fully dy-
namic graphs was first presented by Holm, de Lichtenberg, and Thorup [18],
and they used top-trees to maintain information about the dynamic graphs.
The time bounds were improved by Thorup [34] who obtained an expected up-
date time of O(lg(n) - (Iglg(n))?) and query time O(lg(n)/lglglg(n)), and by
Waulff-Nilsen [39] who obtained a deterministic update time O(lg(n)?/lglg(n))
and query time O(lg(n)/lglg(n)).

Related dynamic graph problems include dynamic minimum spanning for-
est (MSF), which was studied by Frederickson [7], who maintained a minimum
spanning forest for a dynamic graph with update time O(y/m), where m is
the number of edges in the graph. The sparsification technique of Eppstein et
al. [6] improves this to O(y/n), where n is the number of vertices. The first
data structure with polylogarithmic running time was that of Henzinger and
King [15], with (randomized, amortized) update time of O(lg(n)?). Holm et
al. [18] used top-trees to make a data structure for decremental MSF with de-
terministic, amortized update time O(lg(n)?), and a reduction to fully dynamic
MSF which has update time O(lg(n)*). Other related dynamic graph problems
are those of bi-connectivity (do there exist two vertex-disjoint paths from wu
to v?) [10, 16, 15, 18] and 2-edge connectivity (do there exist two edge-disjoint
paths from u to v?) [8, 14, 18]. Related to k-edge connectivity, the fully dynamic
min-cut problem is studied by Thorup [35].

Hopcroft and Tarjan [19] were the first to make an algorithm for planarity
testing of static graphs in linear time. The incremental planarity problem is that
of testing planarity of a dynamic graph where only edge-insertions are allowed.
Incremental planarity testing was solved by La Poutre [26], who improved on
work by Di Battista, Tamassia, and Westbrook [4, 5, 38|, to obtain a total
running time of O(«(g,n)) where ¢ is the number of operations. Galil, Italiano,
and Sarnak [9] made a data structure for fully dynamic planarity testing with
O(nz/ 3) worst case time per update. For maintaining embeddings of planar
graphs, the best result so far is that of Italiano, La Poutr, and Rauch [20]. The
data structure presented by Italiano et al. is for maintaining a (combinatorial)
embedding of a dynamic graph, and has O(lg(n)?) update- and query time.

The highest lower bound for this type of problems is Patrascu’s Q(lg(n))
lower bound for fully dynamic connectivity [30]. However, the best known lower
bound for dynamic planarity testing is that of Fredman and Henzinger [13] and
Miltersen et al. [27], a lower bound of Q(lg(n)/1glg(n)).

1.2 Our idea: The top-tree and the co-top-tree

We want to maintain an embedding of the graph which facilitates edge insertion,
edge deletion, edge query (that is, where may one insert this given edge?), and
alteration of the embedding in the form of flips. One may flip the embedding
in an articulation point or in a separation pair.

For a vertex with k incident edges, there are k incident face corners between
the edges. The reply to a query(u,v) should contain not only the list of common
faces of u and v, but also the place in the ordering of the incident edges to
each vertex, that is, the usable corners. Similarly, the insertion of an edge
should specify which corners should be used for the insertion. The time of query
depends on the length of the face list, but if the user only wants & common
faces (e.g. k& = 1), and k corner pairs, the function easily generalises to a
query((u,v), k).

The idea is to maintain a spanning forest, and use it to make a tree/co-tree
decomposition of each connected component of the graph. For each connected

component, we maintain two top-trees. One for the spanning tree of the compo-
nent, and one for the co-tree. We define the extended Euler Tour (which visits
all edges twice), and note that it is the same for the tree and for the co-tree.

Upon a query of (u,v), we expose u and v in the primal top-tree, using
the dual top-tree to keep track of which corners are incident to either u or v,
and which are not. We also use the top-tree to maintain the list of ”good”
faces (incident to both u and v). All candidate faces for being common, that is,
incident to both v and v, must lie on a path in the dual tree. We can easily (that
is, in O(lg(n)) time) calculate the endpoints of that path, and then these can
be exposed in the dual tree: the good faces on the cluster path of the exposed
cluster are exactly the common faces of v and v.

To alter the embedding, there are two possibilities. If there is an articulation
point, then there is a vertex with two corners to the same face. Then the
embedding is flipped in those corners, and the orientation of the subgraph is
reversed. Similarly, if there is a separation pair, that is, a pair of vertices, u, v,
which have two common faces, f, g, then there is a subgraph delimited by those
vertices and faces — the embedding of this subgraph may be flipped and the
orientation reversed.

In Section 2, I give a short presentation of the basic graph theory needed
to understand my algorithm and the basic data structures it uses as building
blocks. In Section 3, I will give a short outline of the ideas used by Italiano et al.
in their data structure for maintaining an embedding of a dynamic graph using
topology trees. In Section 4, a new data structure for the same task, maintaining
an embedding of a dynamic graph using topology trees, is presented. In Section
5, I will show how this data structure extends to flips, that is, how we can allow
the user to alter the embedding by flipping a sub graph while holding the rest
of the graph still. In Section 6, I improve the Q(lg(n)/lglg(n)) lower bound
by Henzinger [12] to Q(1g(n)), using techniques introduced by Patragcu [30]. I
conclude with a few thoughts about future work.

Acknowledgements

I would like to thank Christian Wulff-Nilsen, Jacob Holm, and Mikkel Thorup
for many helpful and interesting discussions and ideas.

2 Basic concepts

The new data structure I present in Sections 4 and 5, maintains an embedding
of a planar graph. In this section I will present some basic notions and vocab-
ulary for planar graphs, and I will go through some data structures used for
maintaining information about dynamic graphs.

2.1 Planar graphs and planar embeddings

There are two ways of viewing embedded graphs. The classical way and the
combinatoric way. The classical approach is more intuitive, but the combinatoric

approach makes for simpler proofs and makes it easier to generalise results.

Definition In the edge-centric view, a (multi-) graph consists of a set of edges
E and a set of vertices V, such that the vertices form a partition of E x {0, 1}.

€1
o——— o
e
2 es
€3
o— 9
e
4 62 e3 e4

o 55 o e

Figure 3: Left: Five edges, E' = {e;},_; 5, depicted as e; x [0, 1], and a division
of E x {0,1} into four vertices: red, blue, black, and purple. E.g. blue is the
set {(e1,1), (es,0), (e4,0)}. Right: The corresponding graph.

In the classical view, an embedding of (V, E) is a homotopy class of a contin-
uous, injective function: (E x I)/V — 52, where I is the interval [0, 1], where
S? is the two-dimensional sphere, and where by /V is meant that we quotient
out by the equivalence relation corresponding to the partition V.

That the function is continuous and injective means that each vertex is
mapped to its own separate point, and that the edges are drawn as curves which
do not cross. We consider a homotopy class, because we consider embeddings
as equivalent if one is obtained from the other by rotation or stretching of the
sphere.

For a connected graph, an embedding corresponds uniquely to an orientation
of the edges around each vertex, or equivalently, a permutation 7 of E x {0, 1}
such that the orbits of 7 are the classes of V. A proof of this will not be included
here. We call m a combinatoric embedding of the graph.

Not all graphs are planar. The complete graph on 5 vertices, K5, and the
complete bipartite graph with 3 + 3 vertices, K3 3, are examples of graphs that
cannot be embedded in the plane. (In fact, a theorem by Kuratowski [25] states
that any non-planar graph contains a subgraph, which is a sub-division of Kj
or K3 3. Wagner [37] shows that any non-planar graph contains K5 or K33 as
a minor.)

For a planar embedded connected graph, the set of points not in the image
of the embedding will form connected components, which we call faces.

Definition The dual multi-graph G* of a plane (multi-) graph G has one vertex
corresponding to each face of G, and for each edge in G with neighbouring faces
f1 and fo, G* contains an edge between fi and fs.

Note that there may be several edges between two vertices, for instance, the
dual of the graph in Figure 1 has two edges between all incident faces.

Note 2.1. Given a plane, connected graph, G, and a spanning tree T for G,
then the edges of G\ T form a spanning tree for the dual graph G*.

Proof. Let T* denote G \ T as a subgraph in G*. T™* is acyclic, because G was
assumed to be connected, and because T spans GG. T™* spans G*, because T was
assumed to be acyclic. O

Definition We call this the tree-co-tree decomposition of the graph.

Figure 4: The tree-co-tree decomposition of a connected plane graph. The black
lines belong to the spanning tree, the dotted black lines are non-tree edges. The
red lines are the ”dual” edges, which go from face to face. When each red-black
cross contains one dotted and one non-dotted edge, the red non-dotted lines
make a spanning tree for the dual graph.

Note that the dual graph may be embedded such that the dual vertices are
inside the face they correspond to, and such that the intersections of e with e*
for e € E are the only intersections between the two. (Without loss of generality,
we can assume this property holds.)

For a vertex with k incident edges, there are k incident face corners between
the edges. A corner can be thought of as something that links a face to a vertex.
Note that a corner in the primal graph is also a corner in the dual graph, and
vice versa.

Figure 5: A vertex with five edges and 5 incident corners.

Given this definition of corners, we can extend the definition of Euler tour
not only to include non-tree edges but also to include corners, as follows. (See

Figure 5 for an example.)

Definition Given a planar embedded graph G with a spanning tree 7" embed-
ded on an oriented plane, we construct the extended Euler Tour as the following
linked cycle.

1. Pick a corner s = ¢y incident to the vertex v.

2. Using the orientation of the plane, starting with s, add all corners and
non-tree edges incident to v until you reach a tree-edge ¢’ = (v,u). Break
if you reach ¢y, unless the list is empty.

3. Set v =u and ¢ = €', and goto 2.

4. Starting with e, add all corners and edges up to eg. Link the end to the
beginning.

In step 2. above, s may be an edge or a corner, inductively. When we see
co for the second time, we have traversed the entire tree, and may stop. This
way, each edge, whether tree or non-tree, will be visited exactly twice, and each
corner exactly once during the extended Euler Tour.

Figure 6: This graph has extended euler tour 1a2b3c4d5b6e7d8£9e10g...18h,
or to write only the edges: abcdbedfegahgficih.

Lemma 2.2. Using the tree co-tree decomposition of a plane embedded, con-
nected graph, G, the extended Euler Tour of G wusing one orientation of the
plane, is the same as that for the co-graph G* using the opposite orientation of
the plane.

In order to prove the lemma, we use the following definition of an Euler Cut:

Definition Given any closed simple curve C on the sphere S2, then S?\ C has
two components, A and B, each homeomorphic to the plane!. Given an edge e
of the embedded connected graph G with dual graph G*, and a cut C, we say

1Jordan curve thm.

that C intersects e if C intersects either e of G, or €* of G*. Given a tree-co-tree
decomposition for G, we call C' an Fuler Cut if the tree is entirely contained in
A and the co-tree is entirely contained in B, and the curve only intersects each
edge, e or e*, twice.

Proof of lemma. Given any Euler Cut C, note that the edges visited along the
Euler Tour of G come in exactly the same order as they are intersected by C, if
we choose the same ordering of the plane (clockwise or counter-clockwise). The
placement of the corners is uniquely defined by the ordering of the edges.

Such an Euler Cut always exists, because both tree and cotree are connected,
and because they share no common point. One can construct it by contracting
one of the two trees to a point, and then considering an e-circle B, around that
point, where € is small enough such that there is a minimal number of edge-
intersections with that circle. The pre-image of B. under the contraction will
be an Euler Cut. (See Figure 7.)

Now, the Euler tour of G is uniquely given by C. But we also know that G
is the dual of G*, so C' is also an Euler Cut for G*, and thus, the Euler Tour of
G* is uniquely given by C.

Lastly, notice that in order for C' to determine the same ordering of the
edges, we need to orient the two components oppositely, that is, one clockwise
and one counter-clockwise. O

Figure 7: Two Euler Cuts separating the primal tree from the dual tree. Each
is made by following the tree in (roughly) e distance.

2.1.1 Combinatorial embeddings

Although this is not strictly necessary for understanding the thesis, I would like
to present the idea behind combinatorial embeddings, as they may give some
intuition about planar embedded graphs.

A permutation 7 of E x {0,1} such that the orbits of 7 are the classes of V
is called a combinatorial embedding of the graph.

Define rev : Ex{0,1} — Ex{0,1} asrev(e,1) = (e,0) and rev(e,0) = (e, 1).
Then the dual of an embedded graph (G,) is 7* = worev. The orbits of 7* are

10

the faces of the embedded graph. We say that the combinatorial embedding is
planar, if Euler’s formula holds. For a connected graph, this definition of dual is
the same as the classical one. If the graph consists of more than one component,
this corresponds to embedding each component of the graph to its own sphere.
When we later maintain a spanning forest of a graph, we will maintain the tree
co-tree decomposition of each connected component. We do not distinguish
between the two non-homotopic planar embeddings of the graph in Figure 8,
and consider them equivalent, since they have the same ordering of the edges
around any vertex.

ed

Figure 8: These two embeddings of the graph are considered equivalent, because
they have the same ordering of edges around any vertex.

Using this definition of an embedding, the definition of an extended Euler
Tour is straightforward, and the proof of Lemma 2.2 is trivial.

2.1.2 Basic graph vocabulary

In a tree, T = (V, E), for a,z,y € V, we use lca,(x,y) to denote the nearest
common ancestor for (x,y) when the tree is rooted in a. Note that 1ca,(z,y) =
lca,(y,a) and so forth; we denote it also by meet(a,z,y). Given a path p in
the tree, from z to y, we define the projection of the vertex a on the path p as
mp(a) = meet(a,z,y).

In a graph, an articulation point is a vertex with the property that removing
it would increase the number of components of the graph. For an embedded
graph (without self-loops), a vertex is an articulation point iff it has two corners
incident to the same face.

We say that a pair of vertices is k-connected if k (pairwise, internally) vertex-
disjoint paths between them exist. We say that a graph is k-connected, if all
pairs of vertices are k-connected. A 2-connected pair of vertices (u,v) is a
separation pair, if the graph is the union of two proper subgraphs A and B,
neither of which is an edge, such that AN B = {u,v}. For an embedded graph,
(v1,v2) is a separation pair iff they are 2-connected, and there exist four corners
c1,...,Cq4, pairwise incident to vy, ve and to two faces fi, f2, such that no edge
e = (u,v) with corners cy,...,c4 exists. (See Figure 9.) A 3-connected graph
has a unique embedding up to reflection.

See [28, 23] for more on planar graphs and their embeddings.

11

3 2
ue G' oV
c4 ot

Figure 9: (u,v) is an articulation pair if neither G nor G’ consists only of one
edge.

2.2 Maintaining information about dynamic trees.

I will now present data structures which can maintain information about a tree
with n vertices in time O(lgn). These data structures are all in the shape of
trees: ET-trees, topology trees and top-trees. Each have the property that local
information can be "bubbled up” through the root-path of the edge or vertex
where the local information has been dynamically changed.

2.2.1 Euler Tour trees

The Euler tour of a rooted tree visits each path twice and each node with d — 1
children is visited d times. The Euler Tour tree is simply a binary tree over
the Euler tour. Each vertex of the tree keeps pointer to the first and the last
time it appears in the Euler Tour. The Euler Tour is very good for maintaining
information associated to vertices, such as for instance the XOR of the labels of
all outgoing edges, as used in [21] to achieve worst-case polylogarithmic dynamic
graph connectivity.

2.2.2 Topology trees

Given a ternary graph, G = (V, E), that is, a graph where each vertex has
degree at most 3, let T" be a spanning tree for G. Given a subset S of V, we
say that an edge is incident to S if exactly one of its endpoints is in S. We
say two subsets are adjacent if there exists an edge with an endpoint in each
subset. A wvertex-clustering of T is a partitioning of the vertices into subsets,
called vertez-clusters, such that

1. A vertex-cluster with external degree 3 (that is, with 3 edges incident to
the vertex-cluster) contains only one vertex.

2. No vertex-cluster has external degree > 3.
3. Each vertex-cluster contains 1 or 2 vertices.

4. No two adjacent clusters can be unioned and still satisfy the above.

12

Item 2. above is not written explicitly in [20], but is a necessary condition.

Figure 10: A graph with a spanning tree and a vertex-clustering of the spanning
tree. Note that several vertex clusterings of the same tree may exist: In the
bottom triangle, one could have chosen the other leaf to be the singleton.

Now, one can consider the clusters as vertices in a new ternary tree, and
play the game of vertex-clustering again. Doing this recursively, one obtains a
Topology Tree: In each level, we have a ternary tree. At level 0, we have the
original tree, and the vertices at level ¢ + 1 correspond to vertex-clusters on
level 7. Since each vertex at level ¢ + 1 corresponds to one or two vertices at
level 4, this construction gives a binary rooted tree, where the leaves are the
original vertices, the root is the cluster corresponding to the entire graph, and
where adjacency describes vertex cluster membership. Topology trees were first
described by Frederickson in [7], where it is also proved that the tree shrinks by
a factor of 5/6 for each step, yielding a total tree height of O(lgn).

Figure 11: Left: The vertex-clusters at different levels of the topology tree for
the tree from before. First, 8 vertices at level 0, then 5 vertex-clusters yielding
5 vertices at level 1, then 3 at level 2 (blue), 2 at level 3 (red), and finally 1 at
level 4 corresponding to the whole graph. Right: The topology tree.

13

To maintain such a topology tree dynamically, upon an update involving
a constant set of vertices, one may need to split all clusters in the root path
of each vertex involved in the update. Then, at each level, one can greedily
merge at most two clusters to maintain invariant 4. If, for example, the edge
e = (u,v) is deleted. Then two new trees are created: T, and T,,. There are two
cases (at each level), e is contained in a cluster, or e goes between clusters. If e
is contained in a cluster, then that cluster must be split into two new clusters.
Each may have to be merged with at most one other cluster to maintain invariant
one, and each has at most 2 adjacent clusters to ’check’ whether merging would
be legal (because the tree was assumed to be ternary). If on the other hand the
edge went between clusters, then v and v now have a lower degree, and their
(at most 2 each) neighbours must be checked for possible merges.

Since the tree shrinks with a factor of 5/6 for each step, the tree remains
height O(lgn) during these updates.

2.2.3 Ternary graphs

To obtain a ternary graph, G, from an arbitrary graph, G, one may choose an
ordering around each vertex v of the incident edges, e1, ..., eq4, and if d > 1 split
the vertex into d new vertices vy, ..., vq such that e; is incident to v; and not v,
and insert edges (v;, vi11). We call vy,...,v4 the chain representing v.

e2 e2

e5 e5

Figure 12: Left: A vertex with 5 incident edges. Right: The vertex splitting.

In this process, we insert at most two new vertices per edge, and between
them, less than two new edges (v;, v;+1) per edge. This gives a total of O(n+m)
vertices and O(m) edges in the ternary representation of the graph, where the
original graph had n vertices and m edges.

If the original graph is a planar embedded graph, one may choose as the
ordering around each vertex of the incident edges the ordering given by the
embedding. Then, the ternary graph is again planar. When the graph is pla-
nar, there are only O(n) edges, and then, the vertex splitting does not alter,
asymptotically, the number of vertices.

2.2.4 Edge-clusters

In order to define top-trees, we define (edge-)clusters; the building blocks of
top-trees.

14

’ L

\
Figure 13: An edge-cluster in a tree with two boundary nodes.

Given a (not necessarily ternary) tree, T = (V, E), we define an (edge-)cluster
as a connected non-empty subgraph C' with at most two boundary nodes, by
and by, such that any edge (u,v) between v € C and v € T\ C is incident to
one of the two boundary nodes. That is, u = b; or u = bs. A clustering of a
tree is a division of the tree into clusters, which only overlap in the boundary
nodes, and whose union is the entire tree.

Given a cluster with two boundary nodes, we talk about the cluster path as
the unique path from b; to by. We call clusters with two boundary nodes path
clusters and all other clusters leaf clusters.

To visualise this, an edge-cluster in a tree is a subgraph with at most two
boundary nodes, which is connected to the rest of the graph via those two
boundary nodes (see figure 13).

For plane graphs with a tree-co-tree decomposition, an edge-cluster in the
dual graph is a connected collection of faces, all surrounded by primal tree edges,
such that only the two boundary faces may contain edges that do not belong to
the primal tree (see figure 14).

Figure 14: A cluster in the dual graph with boundary faces by and by. The
primary tree (not all of which is depicted) builds a wall around the cluster, such
that all holes in the wall are incident to the boundary faces.

2.2.5 Top-trees

Given a tree T, a top-tree for T is a binary tree whose leaves are the edges of T,
and whose nodes are clusters in 7', and whose root is 7. Any internal node is
formed by the merged union of its (at most two) children. Given an orientation

15

of the edges incident to a node, eq,...,eq, two clusters C; and Cy may only
be merged, if there exists a pair of edges e; € C7 and e; 1 € Co. That is, the
clusters must follow each other in the ordering around their common vertex. If
this is the case, we say the nodes are neighbours.

The tree is built bottom-up by merging nodes, following some given rules
for merging, such that an internal node is the merged union of its children.

To use top-trees as an interface for topology trees, we need to ensure that
legal merges in the topology tree of G correspond to legal merges of edge-clusters
in G. By interface, I mean that merges in the top-tree are determined by merges
in the topology tree. In the top-tree, merges are only allowed, if the resulting
vertex-cluster has external degree less than 2. Let u; and v; denote the boundary
nodes of the resulting vertex cluster, C'. The vertex cluster now corresponds to
an edge-cluster, induced by C, which has u and v as boundary nodes. Assume
C' is formed by merging C,, and C, which are connected by an edge, a = (ug, vo)
(See figure 15). Then the merge in the topology tree may correspond to two
merges in the top-tree: First, merge C,, with a to form the intermediary cluster
I. Since a is incident to C,, ug must be a boundary vertex in C,. The merged
cluster now has vy as a boundary vertex in stead of uy. Second, merge I with
C,.

One topology tree merge,
> a | " / LA v i
U oV ! —e U e ——e ¢

one or two top-tree merges.

R M T T e T
ue——eV
e PR VR
a S
ue —oVv _- -
—e uo——o o< —

Figure 15: There are two cases for merges determined by the topology tree,
given the external degree of the resulting cluster is 2. Either it corresponds
to 7eating a leaf” (left) or to a path-merge (right). The white dots are those
boundary vertices which become internal. Similarly, if the external degree is
less than 2, one topology tree merge corresponds to one or two top-tree merges.

This way, the top-tree is twice as tall as the topology tree, which is still
O(lgn).

Given a planar embedded graph, when forming the ternary tree, we choose
an orientation of the edges around the vertex which corresponds to the planar
embedding. This way, edge-clusters which share the boundary vertex b will
only be merged if correspondingly they include vertices b; and b;41 in the chain

16

representing b, which means, only neighbours will be merged.

) DD

Figure 16: The five different merges of clusters in a top-tree. The white dots are
those vertices which were boundary before the merge but cease to be boundary,
and the black dots are vertices which are still boundary.

Cluster merges have one of the following five forms: (See figure 16.)

1.

The path cluster with cluster-path u ~» v and the path cluster with cluster-
path v ~» w are merged to form the path cluster with cluster-path u ~» w.

. The path cluster with cluster-path u ~~ v is merged with the leaf cluster

with boundary vertex v to form a path cluster with the same cluster-
path and with the same boundary nodes, v and v. That is, there are
still external edges incident to the vertex v, and v does not cease to be
boundary.

The path cluster with cluster-path u ~~ v is merged with the leaf cluster
with boundary vertex v to form the leaf cluster with boundary vertex w.
That is, the vertex v ceases to be boundary.

. Two leaf clusters with boundary vertex v are merged to one leaf cluster

with boundary vertex v.

Two leaf clusters sharing boundary vertex are merged to form a leaf cluster
without boundary vertices.

Dynamically, we allow the following updates to the top-trees over an under-
lying forest:

1.

link(u, v), where u and v are vertices in different trees: link the trees by
adding an edge (u,v).

17

2. cut(u,v): remove the edge (u,v) from the dynamic forest.

3. expose(u,v) where v and v belong to the same tree, T: make v and v
boundary vertices in the root of the top-tree over T'.

4. expose(v): make v a boundary vertex in the root of the top-tree over its
tree T, v eT.

To implement these, the top-tree allows the following modifications

e create(e) and destroy(e), to create or destroy the top-tree with a single
cluster consisting of the edge e.

e join(A,B) and split(C), when A and B are neighbours such that C = AUB.
If A and B are roots of top-trees R 4 and R g, the top-tree R¢ is formed,
having C' = AU B as its root.

If C is the root of R¢ with children A and B, then C' is destroyed and
two top-trees R 4 and Rp are formed.

Along with the top-tree, information about the cluster can be stored. For
example, the weight of the lightest edge on the cluster path can be stored: That
way, if the root cluster is a path cluster with boundary nodes v and v, we can
use binary search to find the smallest weight edge on the path between u and v.

Now, the tree is dynamic, so we may want to e.g. alter the weight of a given
edge. We call this a modification of the tree. To modify the edge e, we identify
the root-path of e in the top-tree. Then, top-down, perform a sequence of
splits of all clusters in the root-path of e. Then perform destroy(e), update the
forest, and create €’. Finally, using the join-operation, we recreate the top-tree
bottom-up.

To use the top-tree, we will have to specify what happens to information in
the case that a cluster is split, and in the case clusters are merged. For instance,
when keeping track of the minimum weight edge on a path, the information
i(C) stored with cluster C' which is the union of path-clusters A and B, is the
minimum of i(A4) and i(B).

Theorem 2.3 ([1]). For a dynamic forest we can maintain top trees of height
O(lgn) supporting each link, cut, or expose with a sequence of O(1) create and
destroy, and O(lgn) join and split. These top tree modifications are identified
in O(lgn) time.

Similarly, with the techniques presented by Alstrup et al. in [1], we may
expose any constant number of vertices with O(lg(n)) joins and splits, identified
in O(lgn) time.

3 Planarity Testing using Topology Trees
In this section, I will present the results of Italiano et al. [20].

To maintain a planar embedding of a graph using topology trees, it is nec-
essary to keep track of edge bundles, coverage bits and face lists.

18

3.1 Edge bundles and targets

Recall that the topology tree is a binary tree whose root is the entire connected
component, and whose leaves are the vertices, and whose internal nodes are
clusters, such that when a level 7 cluster is formed as the union of level i — 1
clusters, this is reflected by the parenthood of the level i cluster to the level i —1
clusters it is formed by.

Definition Given vertices u and v, the lca-target for the edge (u,v), denoted
Cu,v, is the cluster in the topology tree that is the nearest common ancestor of
the leaves u and v. Given a cluster, C, in the topology tree, an edge bundle is
a maximal sequence of edges incident to C that share the same lcatarget.

Note that if C, ,, is the 1ca-target for u and v, then it must have two children,
C, and C,, such that v € C, and v € C,. The edge bundle containing (u,v)
must consist of edges between C), and C,,.

A topology tree may be expanded at a constant number of given vertices,
e.g. the v and v we want to find a common face for. That the tree is expanded
means the clusters containing those given vertices are all split, and then at the
"top level” one has a graph of clusters and edges between them. This is called
the expansion topology tree, or the expanded topology tree.

Definition Given a cluster C' of the expansion top tree and a vertex u € C,
then the precise target for the edge (u,v) is the cluster in the expanded topology
tree is the cluster containing v. Given a cluster, C, in the expanded topology
tree, an edge bundle is a maximal sequence of edges incident to C that share
the same precise target.

For an edge bundle (of either form), the following information is maintained:
The edge count, the first and last edge (following the orientation), and the target
cluster of the bundle. The edge bundles are represented as balanced binary trees,
and upon split or merge of a clusters, they are split or merged. It is a lemma
that there are no more than O(lg(n)) edge bundles (see Lemma 3.1), which
means that splitting or merging takes O(lglg(n)) time.

3.2 Coverage bits and face lists

For a cluster, C, with two boundary vertices, that is, with external degree 2, the
cluster path p(C) denotes the unique path between the two boundary vertices.
By the projection m(v) of some vertex v to the cluster path, we mean the usual
meet (b1, be,v) = 1lca, (b, bs), where by and by are the boundary vertices. For
a cluster C' with one boundary vertex b, we set p(C) = {b}.

19

face

tree edge N
_Heeett . e

Figure 18: A cluster of external degree two keeps track of an edge bundle list
and a coverage list to either side of the cluster path. A cluster of external degree
one just keeps track of a coverage list and an edge bundle list. In the picture
we see an example of edge bundles and faces incident to the northern side of a
cluster with two boundary nodes.

Figure 17: The face, f, has a coverage bit of 1, if any of the vertices on the
cluster path between 7(z) and 7(z’) belong to f.

A face is incident to a cluster if it is incident to at least one vertex in the
cluster and at least one vertex not in the cluster. The coverage bit in the cluster
C of a face f incident to C is one if and only if there exist edges (z,y) and (z’, ")
incident to f with z,2’ € C and y,y’ ¢ C, such that there exists a vertex v,
on the cluster-path between () and 7(z’) which is incident to f (see figure
17). A face incident to a cluster C and a cluster C’ is called a good face if the
coverage bit for f is one, both in C' and in C”. If a face is not a good face, then
no edge can possibly be inserted between vertices v € p(C') and v’ € p(C").

Each bundle, B, of edges between clusters C' and C’ keeps track of the
good faces which lie between edges in the bundle. This is called the face list
of B. Each cluster keeps track of the coverage bit of all those incident faces
that lie between bundles, or between the spanning tree and a bundle, in the
embedding (see Figure 18). The list of such faces with coverage bit 1 is called
the coverage list for the cluster. There are at most O(lg(n)) faces in the coverage
list, according to Lemma 3.1, when the topology tree is expanded in a constant
number of vertices.

For clusters of external degree 2, we maintain two face lists and two edge

20

bundle lists, one for each side of the cluster path. For clusters of degree 1, we
maintain only one face list and one edge bundle list. In either case, the order
in the list follows the counter-clockwise ordering of the edges incident to the
cluster in the planar embedding.

Again, a balanced binary tree is used for maintaining these lists, and thus,
for coverage lists, a split or merge can be done in time O(lglg(n)). For an edge
bundle, there can be up to O(n) faces in the face list, and thus, a split or merge
can be done in time O(lg(n)).

3.3 DMaintaining lists and bundles

Although edge bundles, coverage lists, and face lists are defined for all clus-
ters in the topology tree, it proves more efficient to maintain only a part of
this information at each cluster, and with each cluster a procedure for passing
information to its children in case the cluster is split.

Of course if the cluster has one child, there is no difference between the
bundles and lists of the parent, and those of the child. If the cluster has two
children, the recipe depends on the degree of the children, and upon some
properties of the graph.

The different cases for splitting a cluster C' are: (See figure 19)

1. C has one child. (Then the lists are identical)

2. C has children Y and Z such that Y has degree 3 and Z has degree
1. (Then there are no non-tree edges incident to Y, since the graph is
ternary.)

3. C has two children which both have degree 1 (this only happens when C
is the root).

4. C has children Y and Z such that Y has degree 2 and Z has degree 1. In
this case, there are two subcases: (4b) If Y has a self-loop, then Z cannot
be connected to the rest of the graph, that is, Z has no edge bundles. (4a)
Otherwise, Z may have non-trivial edge bundle list and face list.

5. C has two children, Y and Z, both of degree 2. In this case, the children
will have lists on either side of the spanning tree. Call those the northern
and the southern side. Then there may exist bundles between the northern
sides of Y and Z and between the southern sides of Y and Z. Additionally,
there may be either an edge bundle from the northern side of Y to the
southern side of Z, or from the northern side of Z to the southern side of
Y, but not both, or it would violate planarity.

In the recipe, information about the edge bundles that go between children
is stored (blue lines in Figure 19), as is (for 4a and 5) location descriptors of
where the lists of C' must be split to create the lists of C’s children (in Figure 19,
this corresponds to remembering where in the original ordering of edges around
C' the edges change colour from red to black.).

For details, I refer to [20], and skip to the main lemmas:

21

Figure 19: The four cases for splitting a cluster in two. The blue lines are edge
bundles that go between the sibling clusters.

Lemma 3.1 ([20]). The expansion of a topology tree at a constant number of
vertices takes time O(lg(n)?) and creates O(lg(n)) clusters, edge bundles and
coverage bits.

Furthermore, when the topology tree is expanded at a constant number of
vertices, it is possible to compute the relevant set of precisely targeted edge
bundles in time O(lg(n)?). Together, this entails the following lemma:

Lemma 3.2. The cost of expanding the topology tree at a constant number of
vertices to obtain a cluster graph is O(lg(n)?).

3.4 Queries and updates

We want to know if the edge (u,v) may be inserted without violating planarity,
or equivalently, if u and v belong to a common face. To answer a query of (u,v),
expand the topology tree in the first and last vertex on the chain of u and of v
in the ternary representation of the graph. This takes time O(Ig(n)?) (Lemma
3.2). Let a u-cluster denote a cluster that contains one of the vertices on the
chain of u, and similarly for v. The edge may be inserted iff:

e There is a face in the cluster graph with coverage bit of 1 both at a u-
cluster and at a v-cluster, or

e There exists an edge bundle between a u-cluster and a v-cluster whose
face list is nonempty.

This can be tested in time O(lg(n)) (Lemma 3.1). Finally, the splitting of the
expose operation are reversed.

22

Theorem 3.3. The query takes time O(lg(n)?), dominated by the expose-
operation.

To update the graph, there are several cases.

To insert an edge between two vertices u and v in the same component, the
query-operation is first performed to test if this is at all possible. If it is possible,
the query operation can return the place in the chains of v and u where the edge
would fit. The chains are updated with a new node, and the edge is inserted.
This creates a new edge bundle, and two new faces, both with coverage bit 1.
In short, deleting a non-tree edge does the opposite: Two faces are removed and
one new with coverage bit one is created.

When a tree edge, e, is deleted, a replacement edge is sought. The topology
tree is expanded at the endpoints of the edge. If e was not a bridge, a new
reconnecting edge must be incident to one of the two faces incident to e. Finding
a replacement edge (bundle) can be done in time O(lg(n)). Let e’ denote the
replacement edge. Now, e is swapped with ¢’ as a tree edge, and then e is
deleted just like a non-tree edge.

Theorem 3.4. [20] Edge deletions and insertions take time O(lg(n)?).

4 New approach for planarity

In this section I will present a data structure for dynamic planarity testing of
an embedded graph using top-trees.

To use top-trees for this purpose, we have to make some smaller extensions
and adjustments.

Basically, we keep track of the Extended Euler Tour (eET), the primal top-
tree, and the dual top-tree. We use the dual top-tree to keep track of information
about the primal top-tree, namely, whether corners are incident to exposed
vertices. In order to convey this information in a top-tree setting, we need to
be able to expose corners. First, I will present these tools: the eET, exposing
corners, and a variation of top-trees called slim-path top-trees.

Then, the primal and dual top-trees are described, as is how they work
together. I describe insert and delete of edges.

Finally, I describe how to find common faces of two given vertices, that is,
the query operation. To describe this, or rather to prove correctness, we need
to realise some little lemmas about planar embedded graphs.

Using the tree-co-tree decomposition of a dynamic planar graph was also
used as a technique by Klein in a data structure for multiple source shortest
paths in planar embedded graphs [24].

4.1 The Extended Euler Tour

The eET consists of objects that are corners or edges, alternatingly. Each object
has a successor and a predecessor pointer, like an oriented double-linked cycle.

23

Additionally, each corner also points to the place in each tree where they
become unexposed, that is, where the corner for the first time becomes internal
to an edge-cluster.

In order to point out a segment of the eET, we just need to point to the
starting place and the ending place of the segment.

4.2 Exposing corners

Given a top-tree implemented by reduction to topology trees, we can allow the
user to expose not only vertices, but also incident corners. The result of such
an operation should be a top-tree which in the top has (up to) two clusters:
One path-cluster in case the corners are incident to different vertices, or two
leaf clusters in case the corners are incident to the same vertex.

Figure 20: Exposing corners. Left: corners incident to different vertices. Right:
corners incident to the same vertex.

In the ternarisation of the graph, when a vertex v with incident edges e; . .. eq
is substituted by wv1,...v4, all corners but one correspond to edges between v;
and v;41 (See figure 12). The last corner is the one between e; and e; and
is automatically exposed. If we want to expose corners corresponding to some
links v; <> v;11, we simply delete that given link (or those given links). Once
one or two links are deleted, we join v; <> vg. In this way, we can split and
cut the vertex v into two vertices v and v’. In this case, after the top-tree has
rebalanced itself in accordance with this underlying ternarisation, one of the
two links are relinked. See figure 21.

In the top-tree, exposing two corners, ¢; and cq, incident to v and v, respec-
tively, is done in the following way. First, all clusters on the root-path of each
corner are split. That is, clusters containing u or v as a non-boundary node are
split, and then, all clusters containing c¢; or co are split. That is, we split those
clusters where c¢; or co is internal, not those where they are delimiting. Then,
clusters are merged again. But now, when merging as part of an expose(u,v)
operation, the top-tree adheres to the new enumeration of edges incident to u
or v. This is done with O(lg(n)) splits and merges, and results in a path with
c1 and cy exposed.

If in stead we want to expose two corners ¢; and cg both incident to v, we
do the following. (See Figure 21 and Figure 20 (right).) First, all clusters on
the root-path of the corners are split. Then, clusters are merged again, but in
the underlying ternary graph, the chain of v is split in two, meaning the tree is

24

vertex cut

—>

new link 7
ct

Figure 21: To expose two corners incident to the same vertex, we delete the
corresponding links, and make a new link v; <> v4. We have now cut the vertex
in two, forming v and v’. After having exposed v and v’ in their respective
top-trees, we join them again by relinking one of the two exposed corners.

split in two. When we merge again, the merges corresponds to exposing each
copy of "v” in either of the two resulting trees. Finally, the two copies of 7v”
are glued together (relinked), and the result is a top-tree with two leaves in the
top, exposing v and the two corners ¢; and cz. This is done with O(1g(n)) splits
and merges.

4.3 Slim-path top-trees and four-way merges

We can tweak the top-tree such that the following property, called the slim path
invariant, is maintained:

e for any path-cluster, u ~» v, the only edge incident to a boundary node is
that belonging to the cluster path.

This can be done by allowing the following merge: Given path-clusters u ~» v
and v ~» w, and given two leaf-clusters with boundary vertex v, allow the merge
of those four, to obtain one path cluster u ~» w. For lack of a better word, I
call this a four-way merge.

8.

O

Figure 22: Four-way merge of paths and leaves.

We allow the following merges:

25

e Two leaves merged to one

e A path cluster u ~ v, and a leaf cluster with boundary vertex v, merge
to form a leaf with boundary vertex w.

e Two paths u ~~» v, v ~» w, and up to two leaves with boundary node v
make a four-way merge to form the path u ~~ w.

Since the slim-path invariant has no restriction on leaves, clearly the first two
do not break the invariant. The four-way merge does not break the invariant:
If to begin with there was only one edge incident to u and only one incident to
w, this is still maintained after the merge.

Definition A slim-path top-tree is a top-tree which maintains the slim-path
invariant by allowing four-way merges.

Lemma 4.1. [t is possible to maintain a slim-path top-tree over a dynamic tree
with height O(1g(n)), where n is the number of vertices.

Proof. Proof by reduction to ordinary top-trees (see figure 23). For each path
cluster in the ordinary top-tree, keep track of a slim path cluster, and up to
four internal leaves; two for each boundary node, one to each side of the cluster
path. In the slim-path top-tree, this would correspond to four different clusters,
but this doesn’t harm the asymptotic height of the tree. When merging two
path clusters in the ordinary top-tree, with paths w ~» v and v ~» w, this
simply correspond to two levels of merges in the slim-path top-tree: First, the
incident leaf clusters are merged, pairwise, and then, we perform a four-way
merge. Other merges in the ordinary top-tree correspond exactly to merges in
the slim-path top-tree. Thus, each merge in the ordinary top-tree corresponds
to at most 2 levels of merges in the slim-path top-tree, and the maintained
height is O(lg(n)). O

Figure 23: One merge in ordinary top-trees corresponds to two merges in slim-
path top-trees.

26

Note that four-way merges and the slim-path invariant are not necessary.
One could simply maintain within each path cluster, information about the
internal leaf clusters incident to each boundary node; one to each side of the
cluster path. I present four-way merges because they provide some intuition
about this particular form of usage of top-trees.

Figure 24: In a slim-path top-tree, expose(u, v) exposes a path and two leaves.

We also note that the expose(u, v)-operation is different in a slim-path top-
tree. In stead of returning a top-tree which has at its top a path cluster with
path u ~~ v, the top-tree has at its top a path cluster with path u ~~ u, and, up
to two leaf clusters, one at each exposed vertex.

4.4 The primal and the dual top-tree

For each connected component of a dynamic planar embedded graph, we main-
tain two top-trees. One for the primal, and one for the dual tree of the tree-
cotree-decomposition of the embedded graph component. We call these the
primal top-tree and the dual top-tree, respectively.

When calling ”expose” on two vertices u, v in the primal top-tree, we would
like to be able to reply whether u and v share a face, and if so, return the list of
all incident corners to that face - the corners corresponds to those gaps between
existing edges where an edge between u and v can be inserted.

We do this by using the notion of a deactivation count of all corners. We do
not keep track of the deactivation count explicitly, but use the top-tree to do it
in a lazy way. The deactivation count has the following property: If a vertex is
internal to the merge of clusters in the primal top tree, the deactivation count of
all incident corners is increased. Finally, after exposing u, v, all corners incident
to u and v will have a count of 0, while other corners have a count > 0.

Definition Given a vertex, v, we define the deactivation depth of v as follows:
In the primal top-tree, let Cy be one of the first clusters from the root where
v is a boundary vertex, and let Cy, C1,...,C; be the root path of that cluster.
We now simply count how many times C; is a leaf vertex, whose boundary node
b; is not boundary in C;11, and this count is the deactivation depth of v. (See
figure 28.)

Definition Given a corner c incident to the vertex v, its deactivation count is
the deactivation depth of v.

27

4.4.1 The dual top-tree.

For a path cluster with path u ~» v in the dual tree, incident corners fall in two
categories: those right of the cluster path u ~» v (southern corners), and those
left of the cluster path u ~» v (northern corners).

Definition For a path-cluster in the dual tree, let sy, denote the minimum
deactivation count for internal incident southern corners, and let ny;, denote
the minimum deactivation count for internal incident northern corners. A corner
is incident, if it is incident to a face in the cluster. A corner is internal, if it
is either incident to a non-boundary face in the cluster, or if it is incident to a
boundary face and has co-tree edges on both sides.

Definition For a path-cluster in the dual tree, a good face is a non-boundary
face on the cluster path, which has incident southern corners of deactivation
count Spin and incident northern corners of deactivation count 7npin.

Given a cluster, we can keep track of delimiting corners for that cluster. A
delimiting corner is a corner which is between one edge in the cluster and one
edge not in the cluster. The extended Euler Tour of the whole tree is denoted
as the universal eET. We will denote the sublist delimited by a pair of corners
as an ET segment. Note that neighbouring clusters are exactly those that share
a delimiting corner.

In the dual tree, we store the following information along with each cluster:

e For a path cluster u ~~ v,

— we store the minimum deactivation count for southern corners, suyin,
and for norhtern corners, nyin.

— we maintain the list of good faces. For each such face, store two lists
of minimally deactivated corners.

— for each boundary vertex, v, we maintain two minimum values s, (v)
and nmin (v) of deactivation counts for incident internal corners, and
two lists of minimally deactivated corners, one to each side of the
path.

— we store two pairs of pointers to corners in the universal extended
Euler Tour, defining segments of the extended Euler tour: One from
u to v, and one from v to u. We will also keep track of two "middle
pointers”, which point to delimiting corners of the children, in case
the cluster is split.

— we maintain two lazy ¢ values, ds and ¢, for altering the deactivation
counts, one for the southern Euler Tour, and one for the northern one.

e For a leaf cluster,

— we store the minimum deactivation count for corners incident to the
boundary vertex, ¢pmin-

28

— we maintain a list of incident corners with minimum deactivation
count.

— we store one pair of pointers to corners in the universal Euler tour,
corresponding to delimiting the extended Euler tour of the cluster,
rooted in the boundary node. We keep track of one ”middle pointer”,
which points to the shared corner of the children in case the cluster
is split.

— we maintain a lazy § value for altering the deactivation counts stored
with its children in case it is later split.

When clusters are split, we update their delimiting corner with its corre-
sponding §-value.

In the dual top-tree, when clusters are merged, their Euler Tours are con-
catenated.

Note 4.2. The Euler Tour segments of each cluster are well maintained under
split and merge.

Proof. We walk through all cases of merge, and split is similar.

e In case two leaf clusters are merged to a new leaf, one Euler Tour starts
with the corner ¢ and ends with ¢’: ¢I'¢/, and the other must start with
¢ and ends with ¢’: ¢T’¢”. If they did not share a corner, the two were
not neighbours, and could not be merged. The resulting extended Euler
Tour (eET) must then be ¢T'dT'¢” (if ¢ # ¢”). If per assumption the
two first Euler Tour segments corresponded to the unique segments of the
universal eET starting with their respective corners, then, inductively, this
concatenation returns the unique segment of the universal eET starting
with ¢ and ending with ¢”.

If ¢ = ¢”, the result is the entire eET of the connected component, the
linked cycle ¢Tc¢/T".

e In case the path cluster P with path u — v is merged with the leaf cluster
L with boundary vertex v to form a leaf cluster with boundary vertex w,
then there are two eET segments in P: cyTpc; and coThcs3. In L there
is one segment: c¢1717T>. Note that the corners that L’s segment starts
and ends with are the same as those that occur in the Euler Tours of P,
otherwise the result would not be a leaf, as there would still be incident
edges to v, and v could not cease to be boundary. Then the resulting eET
is coToc1TicaTaes. Again, if the original segments corresponded well to
the universal eET, so will the result.

e In case the path cluster P is merged with the leaf cluster L to form a new
path cluster, let the segments in P be denoted c¢oTper (from w to v) and
coToes (from v to u). Since the two clusters are merged, they must be
neighbours, which means that L must share a corner with P. Without
loss of generality we can assume L is incident to v, say, sharing the corner

29

c1, such that the segment stored in L is of the form ¢17T7¢4. Then, the new
segment from u to v is coTyc1T1cq, while the other segment stays intact.

e In case two path clusters are merged to a path cluster, then they must
share both delimiting corners incident to the vertex, v, which ceases to be
boundary. If they did not share one corner, they would not be neighbours,
and if they didn’t share both corners, the result would have not two but
three boundary nodes - not a cluster. Therefore, if one path cluster has
eET segments coTpc; and c4T5¢5 and the other has eET segments ¢17T7cs
and c3Tbcy, then the merged path cluster has eET segments coTyc1T1c2
and 03T264T305.

O

Lemma 4.3. We can maintain the list of "good” faces of path clusters during
splits and merges. We can also maintain the minimum deactivation counts.

Proof. When two clusters are merged, then depending on their respective min-
imum deactivation count(s), there are different strategies.

e When a path cluster P and a leaf cluster L are merged to form a path
cluster, then let sy,;, and ny;, denote the minimum deactivation count for
P, and let ¢p,;, denote the minimum deactivation count for L. Since the
two are neighbours, they must share a corner, so assume this corner is one
of the southern corners to P incident to v, and let ¢ denote its deactivation
count.

— If Spin < min{¢, ¢min}, then the face list of the merged cluster is
equal to that of P.

— If Smin > Cmin, OF Smin > ¢, then the face list of the merged cluster is
empty, and the list of P stays in P.

Depending on the values of ¢, ¢imin, and spin(v), the value of ¢pin(v) and
the corner-list is updated. As above, lists are merged in case of equality,
and in case of inequality the smallest are included on the higher level and
the larger ones stay at the lower level.

e When two path clusters P : u ~ v and P’ : v ~» w are merged, then

they have some values Spin and np, for one cluster, and s/, ,n! . for
the other cluster. They must share two corners, one on each side of the
central node, s and n. Let ¢s; and ¢, denote their deactivation counts.

(See figure 25.)

We have 3 pairs, (¢s,¢n), (Smin; "min), and (s
and the lists of L and L', respectively.

/

I
mins 1

r i), associated with v,

If a collection of these pairs have the property that they are equal to each
other and less than all the other pairs (on both coordinates), then the face

30

list after the merge is the concatenation of the lists associated with these
pairs, and possibly v is also included.

If no such collection exists, then v is the only candidate for the resulting
list.

In either case, v is included if it contains southern corners of deactiva-
tion count s"¢Y = min{cs, Smin, S,;, } and northern corners of deactiva-

min
tion count n¢Y = min{c,, Mmin, My, - Lhis is determined by examining
/

min
Cg, Smin(v)a Sinjn(v)v and Cny Mmin (U)v nmin (U)

e When two leaves, L and L’ are merged, if they share the corner c¢, then
the new minimum deactivation count is the minimum of ¢y, (from L),

¢ iy (from L), and c. Depending on whether they are the same, or which
is smaller, the corner list will include all or some of them.

e When a path cluster, P, with path v ~ v, and a leaf cluster with boundary
vertex v are merged to form a leaf cluster with boundary vertex u, then the
resulting minimum deactivation count and corner list, are those associated
with w € P. The rest stay at the lower level. (See figure 26.)

Note also that each face appears only once as a good face in the final top-
tree. O

cn

Figure 25: When two paths are merged, the resulting face-list may contain the
face-list of either or both or none of them. The central node may or may not
be included.

Figure 26: When a path becomes part of a leaf, its face-list becomes irrelevant.

4.4.2 The primal top-tree.

We chose to employ the four-way merge strategy and maintain slim paths in the
primary top-tree. Recall, we want to deactivate all corners if they are incident
to a non-boundary node. This information is maintained in the following way,
in all three cases of merge in the slim-path primary top-tree.

31

e When two leaf-clusters are merged to a new leaf with the same boundary
node, we do not do anything.

e When the path cluster u ~» v is merged with the leaf cluster L with
boundary vertex v to form a leaf cluster with boundary vertex u, then the
deactivation count of the corners incident to v must be increased. Since
we maintain the slim-path invariant, we know that all of those will be in
the leaf cluster L. Then, we can look at the cluster path u ~» v which has
the edge e; incident to v. Let f and f’ denote the endpoint faces of e,
and let ¢ and ¢’ denote the corresponding incident corners.

In the dual top-tree, we should expose f and f’, along with the incident
corners, ¢ and ¢’. After the expose, all corners on the extended Euler tour
from c to ¢’ should have a ”plus one” — this is done by updating the lazy
d-value for the root of the dual top-tree after the expose.

e Upon a four-way merge, of the path clusters u — v and v — w, with two
leaf-clusters, U and L, incident to v, let ¢; and e{, be the cluster path edges
incident to v. Let f and f’ be the endpoint faces of e; (corners ¢y and
1), and let g and ¢’ be the endpoint faces of e (corners ¢y and ¢3), such
that f and g are incident to U and f’ and ¢’ are incident to L.

We now need to make two exposes: one exposing f’ and ¢’ with the
corners ¢; and c3, and one exposing g and f along with the corners cy
and cg. After each expose, we update the lazy delta-value of the root,
increasing the deactivation count of all incident corners.

e Finally, when two leaf-clusters are merged to a new leaf with no boundary
node, all corners are deactivated, or, correspondingly, the root of the dual
tree is updated with a d++.

k irrelevant eET segments 7l

RNV AN TS

R relevant eET segments %

Figure 27: When a vertex ceases to be boundary, then we do the procedure of
exposing some corners in the dual tree, once or twice. Depending on whether
these corners belong to different faces (left) or the same face (right), we end
up with a path or two leaves. This gives us, in either case, two extended Euler
Tour, and we need to deactivate the corners belonging to one of them.

Lemma 4.4. When a vertex v ceases to be boundary, then all corners incident
to v are de-activated.

32

Proof. There are two non-trivial cases. Either v ceases to be boundary after the
path cluster © — v is merged with the leaf cluster L, or v was the central node
in a four-way merge.

In the first case, all corners incident to v are either the exposed two corners,
c1 and co, or internal in L. Note that in the primal tree, the extended Euler
Tour of the leaf L is the sub-list of the universal eET delimited by ¢; and cs.
But since, according to Lemma 2.2, the extended Euler Tour of the primal tree
is identical to that of the dual tree, we just need to ensure we have the same
delimiting corners exposed in the dual tree, and, if the top is a path, that we
choose the right one of the two delta-values to increase.

In the second case, the central node, v, ceases to be boundary. Since both
path clusters are slim by assumption, all corners incident to v are incident to
U or L; either they are internal, or they are the ones we expose. But then the
same argument as above applies.

The trivial case is when two leaf clusters are merged to form a leaf cluster
without a boundary node, but then, all corners on all of the eET are deactivated.

O

If we follow these rules when we build the tree, initially, then all corners are
deactivated, and their deactivation number corresponds to how deep in the tree
their vertex ceases to be boundary.

Upon split, we do the opposite: If a new vertex, v, becomes boundary, then
the corners incident to v are re-activated, and their deactivation count decreased.
Depending on whether the split were a four-way split or a path-leaf split, we
do the procedure of exposing two corners and reactivating their eET segments
once or twice.

Lemma 4.5. By using these rules for split and merge, the deactivation number
for a corner incident to a vertex v equals the deactivation depth of v.

Proof. The proof of this lemma is similar to that of Lemma 4.4; it follows from
the definitions and from Lemma 2.2. O

Lemma 4.6. After exposing u and v in the primary tree, all corners not inci-
dent to u or v will have deactivation counts > 0, and those incident to either u
or v will have a deactivation count of 0.

Similarly, if we only expose one vertex v in the primary tree, then all corners
not incident to v will have deactivation count > 0, and those incident to v will
have deactivation count 0.

Proof. This follows from Lemma 4.5. O

4.5 Updates to the graph

When the graph is updated, by the insertion or deletion of edges, we need to
make updates to the top-trees. When edges are inserted or deleted, the number
of faces does not stay constant, even if the number of vertices stays constant.
For this reason, we need to define the operations of cut and join of faces.

33

Figure 28: The root path of the highest cluster with v as a boundary node in
the primal top-tree. v has deactivation depth 4.

Insert has two cases, depending on whether the inserted edge is to be added
to the primary tree (that is, it connects two components) or the dual tree.
Symmetrically, there are two cases for delete, depending on whether we delete
a bridge, or we must find a replacement edge.

4.5.1 Cut and join of faces.

Given a face f and two corners incident to the face, say, ¢; and ¢z, we may cut
the face in those corners, producing new faces f and f/. We go about this in
the same manner as expose(cy, ¢z) in the dual tree, except we do not re-link the
two chains for f, but rename them as f and f’.

Similarly, faces may be joined. Given a face f and a face g, a corner cy
incident to f and a corner ¢4 incident to g, we may join the two faces to a new
face h, with two new corners ¢; and c¢o, such that all edges incident to h between
c1 and ¢y are exactly those from f, in the same order, and those between co and
¢y are those from g. We do this by exposing f and cy in one top-tree, and g
and ¢4 in the other top-tree, and then by the link and join operation.

4.5.2 Inserting an edge

To insert an edge between two components, we must add it to the primary tree.
Given a vertex v with an incident corner ¢, to the face g, and a vertex u with
an incident corner ¢, to the face f, we may insert an edge a between u and v.

In each primal top-tree, we expose v, ¢, and wu, ¢, respectively. In the dual
top-tree, we expose g,c, and f,c,, respectively. We then link u and v, and

34

update the eET correspondingly: New corners ¢y, ..., c4 are formed, such that
the new edge a = (u,v) appears the successor of ¢4 and the predecessor of ¢y,
and the successor of co and the predecessor of ¢z (see figure 29). That is, we
may view the top tree in its current form as the top-tree with an exposed path
(u,v) which is trivial (consisting of one edge) and two leaves, one at each end.

In the dual tree, the faces f and g are simply joined at the incident corners
¢y and c¢,, respectively.

f g h
dual:
f g h
(o <0 - (FO
Figure 29: The component of u is joined with the component of v by the edge
a, and new corners are formed.

To insert an edge inside a component, the two vertices must belong to the
same face. Let u and v be vertices with corners ¢, and ¢, incident to a face f.
We can then expose the corners ¢, and c,, which gives us a path cluster in the
primal top-tree (and some leaves, because we use slim-path top-trees), and in
the dual tree, exposing those corners gives us two leaves, both incident to f.

We now create new corners cy,...,cq4, and update the eET to list the new
edge, a = (u,v), as the successor of ¢; and predecessor of ¢a, replacing ¢, and
as the successor of ¢3 and predecessor of cq4, replacing ¢, (see figure 30). In the
dual tree, the face f is split in the corners ¢, and c¢,, creating new faces g and
h, and a new edge (g, h) is added to the dual tree.

35

dual:
fe, g _«h
& % O_\Q

Figure 30: The corners ¢, and ¢, are exposed, and an edge a = (u,v) (blue) is
inserted in those corners. The dual of a, namely a* = (f, g) (pink), is inserted
in the dual tree to connect the two new faces, that appear when the face f is
cut in two by the insertion of the edge a.

4.5.3 Deleting an edge

There are three cases, depending on whether the edge to be deleted is a bridge,
a non-tree edge, or a replacement edge exists.

f f f'

i .
R
dual:

C&D 7 D

Figure 31: The bridge (u,v) is deleted.

An edge, e, is a bridge if its dual e* is a self-loop of some face. To delete
a bridge e = (u,v) incident to the face f in corners ci,...cq (see figure 31).
Expose u and v in the primary tree. Expose the corners cq,...cq in the dual
tree, meaning we have at the top a four-leaf clover of clusters incident to f.
Cut f into those four parts, and delete the leaves corresponding to cqsec; and
csecs. Let ¢, denote the newly formed corner incident to u and ¢, that incident
to v. We have now split the face f in two, and have two corresponding eETs
and two dual top-trees. In the primal top-tree, delete the edge u; this leaves us
with two top-trees, on with a leaf with boundary vertex v exposed and one with
boundary vertex u exposed — update the corresponding corners to be exactly
the ¢, and ¢, created in the dual top-tree, respectively.

36

If a non-bridge tree-edge is to be deleted, its dual induces a cycle in the dual
tree, C(e*). Any edge on this cycle would reconnect the components and can
be added to the primal tree as a replacement edge. For simplicity, we can just
choose the edge after e* on that cycle.

Figure 32: We delete the tree-edge e = (u,v) from the graph. The non-tree
edge (u',v’) is added to the spanning tree, and the faces on either side of e are
joined.

Let e = (u,v) be the edge we want to delete. Let f and g be the faces
incident to e. First, expose u and v in the primal tree. The top of the primal
top-tree is now of the form leaf-path-leaf, where the path-cluster consists of one
edge, (u,v). Since f # g, exposing corners cy, ¢ incident to e (and to v) in the
dual tree returns a top-tree with a path-cluster as root. Let ay = (f,h) = e
be the first edge on the cluster path from g to f. We want to replace e with
e1 = (v, v"). (See figure 32.)

Let ¢;, and ¢}, be the corners of a; incident to h. Expose the vertices u, v, v, v
and the corners ¢, and ¢, in the primal top-tree.

Expose the faces f and g and the corners c¢; ...c4 in the dual top-tree. In
the dual tree, delete the edge a; = (f,h) from the tree. Cut f in ¢g,c3 and
g in c1, ¢4, delete the leaves corresponding to coecs and cqeci, and name the
replacing corners ¢y and ¢4 (updating the eET). Then, join the faces f and g in
the corners ¢y and ¢4, and name the newly constructed corners ¢, and ¢,. The
dual top-tree now has the path cluster with boundary vertices h and g as root.

In the primary tree, delete the edge (u,v). The newly formed corners are
exactly the ¢, and ¢, formed in the dual top-tree. Link the vertices v’ and v’,
and update the eET correspondingly. That is, if r1, 9, r3, 4 are corners incident
to e; = (v/,v’), then exchange the segments roe1r; and r4e173 to roe1rs and
rq4€171.

37

<0 - OO

Figure 33: A non-tree edge is exposed in the dual top-tree, and removed.

Deleting a non-tree edge is the opposite of inserting an edge inside a face
(see figure 30). If a non-tree edge e = (u,v) is deleted, its incident faces f
and g must be joined. In the primal tree, expose u,v and the corners cy,...,cq4
incident to e. In the dual tree, expose the edge e* = (f, g), which must belong
to the co-tree, and all four corners incident to e. Cut g in the corners ¢y, c4,
cut f in the corners ¢y, c3. Delete the cluster containing e*, and join f and g in
the corners ¢y and ¢, which were created from the cut. The join produces new
corners ¢, and ¢,. In the primal tree, the leaves with eET coecy and cyecs are
deleted, and the delimiting corners for the cluster path are updated to be the
newly formed ¢, and ¢,. During this procedure, the eET is updated to contain
¢y in place of coecy and ¢, in place of cqecs.

4.6 Finding a common face

Lemma 4.7. If eqg...e; is a primal path from u to v, then for any e; on the
path, any face containing both w and v will be contained in C(e}), the cycle in
the dual graph induced by the edge ;.

Proof. The cycle C(ef) induces a cut of the graph, which separates u and v.
Let f be a face which is incident to both w and v. Then there will be two
paths u ~~ v on the face f, choose one of them, p. Since C(e}) induces a cut of
the graph, which separates u and v, some edge ec € p must belong to the cut.
But then f is a dual endpoint of e, and thus, f belongs to C(ef). O

Corollary 4.8. Ifeq...e; is a primal path from u to v, then any face containing
both w and v will be contained in the intersection of C(ej) with C(ef).

Since that intersection is necessarily a path, we can expose its endpoints in
the dual top-tree, and if the minimal un-exposition counts are 0, the maintained
list will automatically be the reply to the query.

To expose the endpoints of the intersection path, we need to find them.

Definition Given three vertices z, y, z on a tree, define meet(z,y, 2) as nca(y, z),
the nearest common ancestor of y and z in the tree rooted in x.

Note 4.9. For any triple of vertices (x,y,2) on a tree, for any permutation
o of the triple, meet(x,y,z) = meet(o(z,y,z)). That is, meet(z,y,z) =
meet(z, z,y) = meet(y,z,z) = ... and so on.

Lemma 4.10. Given a tree, T, the intersection I of two paths in the tree a ~ b
and p ~ q, falls in two cases:

38

e The intersection is empty if and only if meet(a,p,q) = meet(b,p,q) #
meet(a,b,p) = meet(a,b,q),

e The intersection is non-empty if and only if it is a path if and only if
either:

— meet(a,p,q) = meet(a,b,q) and meet(a,b,p) = meet(d,p,q), and
then I is the path between meet(a,p,q) and meet(a,b,p).

— Or, meet(a,p,q) = meet(a,b,p) and meet(a,b,q) = meet(b,p,q),
and then I is the path between meet(a,p,q) and meet(a,b,q).

Figure 34: The three different scenarios.

Proof. Clearly, the intersection is either empty or not-empty, so if the bi-implications
hold, these are all of the cases.

If the intersection is empty, then one can contract each path to a point,
say, a ~> b to a’. Then, meet(a,p,q) and meet(b,p,q) in the original graph
both equal meet(a’,p,q) in the contracted graph. Similarly, one could have
contracted p ~ ¢q. Furthermore, since the intersection is empty, p’ # o/, and
thus, meet(b,p,q) # meet(a,b,p).

To see the other direction, assume meet(a,p,q) # meet(a,b,p). Then, pf =
meet(a’,p,q) # a’ = meet(p’,a,b). But then, if we contract both paths, there
will exist a path p' ~» a' between them, and thus, since the original graph was
acyclic, they must contract to two different points, implying I = ().

Assume T # (. Root the tree in a. Now I is the intersection with the root-
path of b with the path p ~» q. Let u € I denote the closest point to a on the
path to b, and let v € I denote the furthest. Then, the entire path u ~» v must
belong to I, since the graph is acyclic, and thus, u ~ v = I. Since u ~» v is
also a contained in the path ¢ ~» p, assume, without loss of generality, that u is
closer to ¢ than v is. Then, since u € I, u is a common ancestor of (g,b). But
since u must be the point closest to ¢, on p ~> ¢, u must also be the nearest
common ancestor for (¢,b). Similarly, u is also the nearest common ancestor for
(¢,p). That is, u = meet(a,q,b) = meet(a,q,p). Turning the tree on its head
and rooting it in b we obtain v = meet(a, b, p) = meet(d,p, q).

If in stead u had been closer to p than to ¢, then we would achieve the second
sub case.

To see the other direction, assume v = meet(a,b,p) = meet(q,b,p), and
u = meet(a,b,q) = meet(a,p,q). Again, root the tree in a. Then because v is
an ancestor of b and so is u, then the entire path u ~» v belongs to the rootpath

39

of b, that is u ~ v C a ~ b. By a similar argument, rooting the tree in ¢, one
obtains u ~ v C ¢ ~ p. And thus, u ~ v C I. We can now subdivide the path
a ~> b into three: a ~» u ~» v ~» b, and similarly, ¢ ~» u ~» v ~ p. We need
to realise that the ”snippet” subpaths a ~~ u, etc., do not belong to I. If again
we root the tree in a, then because u is the nearest common ancestor of ¢, p, no
part of the path a — u belongs to the path ¢ ~» p. Similarly, u ~> v intersects
trivially with ¢ ~» u, with v ~» b and with v ~» p. And then, we must have
equality I = u ~ v.

If we swap the names for p and ¢, the above is an argument for the second
sub case. O

Corollary 4.11. Given a spanning tree of a (multi) graph and given two edges
e and €', with endpoints a,b and p, q respectively, then if we know

meet(a, b, p), meet(a,d,q), meet(a,p,q), and meet(b,p,q),

we can determine if the intersection between the two cycles C(e), C(e') induced
by the edges e and €', is empty, or, we can determine its endpoints.

Proof. If e and e’ share both endpoints, the intersection equals C'(e) = C(¢’).
Otherwise, we have three or four endpoints, and we calculate meet as in the the-
orem above to determine if the intersection is empty, or, which are the endpoints
of its interval. O

But then, given a path eg...e; from u to v, to locate the intersection of
C(ef) with C(ef), we simply need to calculate the four meet operations on the
endpoint faces of e and e;.

Lemma 4.12. Given a top-tree over a tree T', with vertices a,b,c € T', we can
find meet(a,b, c) in logarithmic time.

Proof. Split all clusters containing a, b, or ¢ as a non-boundary vertex. There
are only O(lg(n)) of those. Now in the top of the top-tree, we have a tree with
O(lg(n)) vertices. Use this tree to find meet(a,b, ¢) in linear time. O

The algorithm is now obvious.

Algorithm 4.13. If we want to find a common face for u and v, expose u
and v in the primal tree, using the dual tree to keep track of un-exposition
counts. Now either u and v belong to different trees in the spanning forest and
can just be connected, or they belong to the same component, and a unique
path eg...e; exists. Using the dual top-tree, we can find the intersection of
C(ef) with C(ef). If this intersection is trivial, we return that no common face
exists. If the intersection is the interval between f and f/, we expose f and f’
in the dual top-tree: If the minimum deactivation counts are 0, the maintained
corner-list will be exactly the answer to our query.

Furthermore, the boundary faces may also be candidates. If their minimum
deactivation count is > 0, we may discard them. If not, we do not yet know
whether they have incident corners to both u and v. To find this, expose first

40

Figure 35: The two cases of query(u,v). The black lines are tree-edges on the
exposed cluster path u ~~ v, the red lines are edges in the dual graph, the dotted
ones are non-tree edges corresponding to ej and e;. Left: The intersection of
the cycles in the dual tree is trivial, and no common face may possibly exist.
Right: The intersection forms a path between two meets (red dots).

w in the primal tree (this is done with one merge), and then, expose f and f’
again in the dual tree. If the minimum deactivation count is 0 for both f and
f’, return, otherwise remember the corer-list of either of them, and likewise,
Cryin- Then, do the same for v. If f or f’ (or both) has minimum deactivation
count 0 in both cases, then it is a common face, and its corresponding corner
lists, those we remembered, consist of corners incident to u and v respectively.

Theorem 4.14. The algorithm above is correct and runs in time O((Ig(n))?).

Proof. Correctness follows from Lemma 4.12, Lemma 4.11, Lemma 4.6.

The running time comes from the time it takes to expose in the primary
tree. To expose in the primary tree, we do O(lg(n)) splits and merges. For each
of these, we do at most two exposes in the dual tree. An expose in the dual
tree requires O(lg(n)) splits and merges, each of which take constant time. So
each split or merge in the primary tree takes logarithmic time. In total, this
gives a time of O((Ig(n))?) for the primary top-tree expose. All other steps of
the algorithm require only o((Ig(n))?) time. O

5 Extending to flips

We allow for the user to update the planar embedding of the graph by the two
flip-operations. A subgraph may be flipped if it is not too well-connected to
the rest of the graph. If the graph has an articulation point, v, then v has two
corners incident to the same face, and we may flip the subgraph between those
corners. If the graph has a separation pair, then there are two faces, which
are both incident to both vertices, and we may flip the subgraph delimited by
those faces and the separation pair. Internally, both flip operations are done by
cutting out a subgraph, altering its orientation, and joining the subgraph back
in.

If two (2-connected) vertices, v1 and vy, are both incident to two faces, f; and
fa2, (that is, v1, vy are a separation pair,) then a procedure for altering the em-
bedding is the flip-operation, which takes the subgraph bounded by vy, f1,v2, f2,

41

and turns it upside down in the embedding of the graph. For the embedding, this
means the enumeration of edges incident to v;,7 = 1,2 is changed: If all incident
edges are enumerated 1,...,[;, then for some 1 < k; < p; < [;, the enumeration
will be 1,...]%7 1,p1,,k1,p1+1l1 or li,...pi+1,ki,...,pi,]€1‘7 1,...,1.
The two enumerations cover both scenarios: edge no. 1 is outside the flippable
subgraph, and edge no. 1 is one of the edges in the graph to be flipped.

In the dual graph, the flip corresponds to two splits f; — (a;, al), two cuts
a; < a}, two links a1 ~» a} and as ~~ af, and two merges (a1,a)) — f1 and
(az,a1) = fa.

' fli
G p

Figure 36: The flip-operation

Similarly, if one vertex has two incident corners of the same face, ¢; and co,
we may flip in that one vertex such that the corresponding subgraph is flipped
in the embedding.

To facilitate flip, we allow the following updates: Seclude and include. Se-
clude takes one graph and four corners and returns two graphs. In Figure 36,
the returned graphs would be G\ G’ and G’. Include does the opposite. Given
two graphs, an outer graph G° with a designated face and two vertices u and
v on the face, and an inner graph G* with a designated face (corresponding to
the outer face) and two vertices on that face, v’ and v’, we glue the inner graph
on the designated face of the outer graph.

That is, the flip consists of three parts: Seclude, alter, include. By ”alter”
is simply meant that the orientation of an entire graph is reversed; the graph is
flipped. As a tool for this operation, we need to be able to perform vertex cuts
and vertex joins.

First, the articulation flip will be described. To flip in an articulation point,
we only need to be able to cut a vertex, alter the orientation of a graph, and
join two vertices to one. (See figure 37.)

5.1 Vertex cuts

Given a vertex v and two corners ci, co incident to v, we may cut the vertex in
two such that all edges between c¢; and cp belong to the new vertex v/, and all
edges between ¢y and ¢; belong to v. (See Figure 37.) The corners ¢; and co
are deleted, and new corners ¢ and ¢’ are created, and the extended Euler Tours
are updated correspondingly. (See figure 38.)

42

€7
split ¢

C1 C2

join c

Figure 37: Left to right: The vertex is split in two specified corners, and two
new vertices are formed. Right to left: Two vertices are joined to one.

e
e (7] Co elQ 1

C1 e’y
e’y C

Figure 38: The extended Euler Tour is cut in ¢; and cg, and glued back together
to form two tours. New corners, ¢ and ¢’ are formed.

The eET cycle is split into two cycles; let e; and e; denote the successor of ¢y
and the predecessor of ¢;, respectively, and let ¢} and e}, denote the successor of
c1 and the predecessor of ¢y, respectively. The corner ¢ will take place between
e; and e in the eET containing v, and the corner ¢’ will take place between €],
and e} in the eET containing v". (See figure 38.)

In the underlying ternary representation of the tree, we have already ex-
plained how to cut the edges that correspond to ¢; and co. See figure 21. Unlike
expose(cy, ¢2), we do not make a new edge connecting v to v’, we leave them to
be disjoint. To see the description of what happens in the top-tree, see section
4.2.

5.1.1 Primal and dual vertex cuts

We need to be able to cut both primal and dual vertices. For convention, the
extended Euler Tour is updated when primal vertices are cut, and never when
dual vertices are cut.

43

5.2 Altering the orientation

In order to flip, we need to alter the orientation of a graph. In the eET, the
predecessor becomes a successor and vice versa.

To implement this, we let the clusters of the primal and dual top-tree contain
one more piece of information, namely the orientation of the cluster, which is
plus 4+, or minus —. When a cluster is split, its sign is multiplied with the signs
of its children. That is, if a cluster with a minus is split, the minus is propagated
down to the children. When clusters are merged, the new union-cluster is simply
equipped with a plus.

When a cluster is "negative”, some of its information changes character:

e its left-hand child becomes a right-hand child and vice versa,

e the begin- and end- vertices swap interpretation, as do begin- and end-
corners,

e if it is the path-cluster from w to v, it should be interpreted as the path-
cluster from v to wu, that is, north and south also swap,

e and, finally, in the extended Euler Tour, predecessor is interpreted as
successor and vice versa.

In the 3-step program of ”seclude, alter, include,” the alter-step simply con-
sists of changing the sign of the top cluster of the dual top-tree.

5.3 Vertex joins

Given two vertices, and given a corner incident to either vertex, we may join
the two vertices, as an inverse operation to the vertex cut.

If ¢ is a corner incident to the vertex v and ¢’ is incident to v/, we may
perform the operation join(e, ¢’).

We will assume, we have exposed the vertex-corner pairs, v,c and v’,c’ in
either top-tree.

Now, the extended Euler Tour is updated correspondingly. We must create
new corners, ¢; and c¢o. In the euler tour, ¢; must point to the predecessor of
c as its predecessor, and the successor of ¢’ as its successor, and similarly for
co. And vice versa, the object of those edges must point to ¢; and co. But,
since either exposed top-cluster may have a negative sign, the predecessor or
successor of ¢ or ¢ may be interpreted the opposite way. That is, we may have
the case where a pointer to ¢ is placed as the predecessor-pointer for some edge
e}, although ¢ is also the predecessor of ¢o — simply because the negative sign
means they swap interpretation.

5.4 Articulation flips

We now have the necessary tools for flipping in an articulation point, that is,
if a vertex has two corners incident to the same face, we may flip the subgraph

44

spanned by those corners. This is done by the three-step scheme of cut, alter,
join.

join

Figure 39: To flip in an articulation point: cut, alter, join.

\

Given a vertex v and two corners c¢; and cs incident both to v and some
common face f, we first perform the vertex cut, cut(v, ¢1, ¢2) in the primal top-
tree. Then, we perform the operation of cut(f,cy,ce) in the dual top-tree (See
figure 40). Together, these two operations return two graphs, G and G’, with
respectively v, c and v/, ¢’ exposed in their primal top-trees, and with f,c and
f',c exposed in their dual top-trees. Then, we alter the sign of the top cluster
of the cut-out subgraph G’. Finally, we perform the operation join(c,c’), first
in the dual, and then in the primal top-tree, gluing G’ back to G - but since the
sign of G’ was altered, this means we have flipped G’.

This operation takes O(lg(n)?) time, dominated by the expose-operation in
the primal top-tree.

articulation flip

Figure 40: In order to flip the component, the orientation must be flipped, not
only in the primal tree, but also in the dual tree. The figure shows, how the
co-tree edges from f to the flippable component change their order, when the
component is flipped.

5.5 Seclude

Given four corners c1, ..., cq such that ¢q, co are incident to the vertex v, c3, ¢y
are incident to the vertex u, co,cs are incident to the face f and c4,c; are
incident to the face g. See figure 41.

To seclude(cy, 2, ¢3, ¢4), cut the vertex v through the corners ¢; and cq, cut
u through c3 and ¢4. In the dual top-tree, cut the face f in ¢; and c3 (obtain

45

' .v

~

Figure 41: The subgraph G’ is delimited by two vertices and two faces. The
picture shows how G’ is cut out of the graph G.

f and), and cut the face g in ¢4 and ¢; (which returns g and ¢’). Then, join
/' with ¢/, and f with ¢ in the dual top-tree. We now have two graph-stumps,
denote them G and G’, where G contains v and v which are both incident to
one face h which was formed by joining f with g, and where G’ contains «’ and
v/, both incident to the new face h'.

This procedure consists of two vertex cuts in the primal tree, time O(lg(n)?),
two vertex cuts in the dual tree, time O(1g(n))

5.6 Include

Include is the inverse operation of seclude above.

Given two graphs, G and G’, and given two vertices u,v € G and two vertices
u',v" € G’, and given a designated face h € G incident to both v and v, and
similarly a face b’ € G’ incident to u’ and v'. Let four corners be given, such
that ¢, is incident to v and h, and so on, ¢y, Cur,ns Cor b -

To perform include(cy.p, Co.h, Cur by Cor 1): Cut the face b through the cor-
ners ¢, and ¢, p, and cut the face A’ similarly. Let the resulting nodes be
denoted f, g, and f’,g’, respectively. Now, join the faces f with f’ and g with
¢'. Finally, join the vertices u with ' and v with v’.

5.7 Flip

Similarly to flipping in an articulation point, we now show how to flip in a
separation pair.

Given two vertices which are incident to two faces, and given four delimiting
corners ¢j . ..cy pairwise incident to both vertices and both faces (as in Section
5.5), we perform flip(cy, c2, ¢3,cq) with a three-step procedure: Seclude, alter,
include.

First, seclude the subgraph delimited by the corners. Then, alter its orien-
tation by changing its sign. Finally, perform include, such that f joins with ¢’,
and g with f.

This takes time O(lg(n)?), dominated by the seclude and include operations.

Theorem 5.1. We can support flips in a separation pair in time O(1g(n)?).

46

Figure 42: The update assigning a new value to ¢, corresponds to p edge
deletions and p edge insertions in the dynamic forest.

6 Logarithmic lower bound for planarity

So far, the best lower bound for dynamic planarity testing was Q(lg(n)/lglg(n))
by Henzinger et al. [13], which is shown by reduction to the parity problem.
Patragcu later developed a technique for showing Q(lg(n)) lower bounds, e.g.
the bound of Q(lg(n)) for the maximal of update- and query time in fully dy-
namic graph- or forest connectivity. He does this by proving that same lower
bound for the partial-sums problem, and then making a reduction. In fact, he
shows a stronger result: Let t, be the query time and ¢,, the update time, then
telg(tu/ty) € Q(lg(n)) and t, 1g(ty/tu) € Q(g(n)).

In Patragcu’s article, the dynamic p-permutation prefix problem is consid-
ered. We have p permutations of p elements, oy ...0,. Initially, these are all
the identity. An update takes an index j € [p] and a permutation o € S, and
assigns o := 0. Given some j, 1 < j < p, we can define the total composed per-
mutation up to j: ¥; = 0j0...001. A query takes an index j and a permutation
Y €Sy, and asks if ¥ = 3;.

Lemma 6.1 ([30]). For the p-permutation prefiz problem (defined above), the
average time per operation is Q(plg(p)).

This is not stated explicitly as a lemma, but is implicitly used in [30, Section
7.3] and described in [30, Section 6].

To reduce to connectivity from the p-permutation prefix problem, Patragcu
considers a set of p- (p + 1) vertices, organised in a p x (p + 1) rectangle. (See
Figure 42.) Between consecutive columns, a permutation is represented as a
perfect matching. All together, we have \/@ paths of length m , going from
the first to the last column. A vertex v; ; has the position (4, j) in the rectangle.
An update of a permutation corresponds to a bulk-update of p edge deletions

47

and p edge insertions. A prefix query corresponds to verifying for some ¥ and
some j, 1 < j <p, that ¥ = ¥;, this means for all i that vy ;) belongs to the
same connected component as the vertex v;;. Thus, a prefix query corresponds
to p connectivity queries.

Since there are p updates or queries per bulk-operation, lower bound for each
of them becomes Q(plg(p)/p) = Q(lg(p)). We want to express this in terms of
the number of vertices in the graph, there are n = p - (p + 1) vertices, that is,
p = O(y/n), and thus the lower bound is Q(lg(y/n)) = Q(lg(n)).

6.1 Reduction to dynamic planar embedding

Consider the problem of maintaining an embedding of a dynamic planar graph.
The operations are delete, insert, and query, which take time t4,1;,%,, respec-
tively.

Theorem 6.2. For maintaining an embedding of a dynamic planar graph with n
vertices, there is a lower bound max{t;, tq,tqs} = Q(lg(n)), which holds regardless
of amortisation and randomisation.

My idea is to use an approach which is similar to Patragcu’s reduction from
the p-permutation prefix problem to dynamic connectivity. As with connectiv-
ity, permutations correspond to perfect matchings, but in stead of a forest we
use a connected embedded graph.

T

. [‘ (/7’ 77/'7\,% \

Vo2t

Vo3~

Figure 43: p-(p+1) vertices are connected by perfect matchings of columns, and
lie inside a face. Updates exchange one perfect matching with another. Upon a
query, the red edges are inserted, until either there is a pair where the red edge
cannot be inserted (returns false), or all ¢; have been matched (returns true),
and then all the red edges are removed again before the game goes on.

Consider the following construction. (See Figure 43.) As before, p - (p +
1) vertices are arranged in a rectangle, and we name them v; ; according to
their position. We create vertices T and L, and vertices ¢;...¢,. The path
T,t1,...,tp, L is linked, as is the path T,vp1,...,v0,p, L. Thus, a cycle is

48

formed, and the plane is divided in two faces. We refer to this cycle as the
frame.

For maintaining an embedded graph, the update instructions correspond to
those in our data structure. Edges may be deleted, or inserted in specified cor-
ners. The query operation replies whether a common face exists, and returns
the appropriate face and corners. As with connectivity, all permutations corre-
spond to a perfect matching of the vertices in two columns. Only in the case of
o1 we have to be careful, and insert all the the edges in the corner incident to
the same face (e.g. the internal face in Figure 43). Again, updates correspond
to interchanging a permutation.

The query corresponding to verifying the permutation ¥ as the j’th prefix
permutation ; now corresponds to linking v;; to t5-1(;), for all . The corre-
sponding targets ¢ ...¢, are on one side of the frame (the right side in Figure
43). That is, for i = 1...p, query (vjq,tx-1(;)). If the returned list is empty,
return ”false” and delete all the inserted edges (the red edges between the j’th
column and the ¢’s). If the returned list is non-empty, it contains exactly one
face and up to two corners incident to v; ;. Insert the edge in either of those
corners and proceed. If the edge insertions were all possible, return ”true”, and
delete all the new (red) edges again.

T

Vord o o UEM e “\

L Vo@.. . Jiy@ . |

Vo3t e S

> e . _—

S — v —

i

1040 o JiZP) .. e
VU,pi 04(p)... 1.%;(P) J tp

1

Figure 44: When we maintain a planar embedding of the graph, the paths look
like this, vo,v1,%,(i),....2,(i)- When we make a query, we start by inserting the
edge between v;1 and fx-1(1), and proceed for other values ¢ > 1, until all
are matched or an insertion is impossible. The red lines depict a query which
returns ”false”.

Clearly, if ¥ = ¥, the bulk-query returns "true”. And vice versa, if ¥ # X,
then there exists a pair ¢,¢" such that (i) < X(¢'), but X,(¢) > ¥,(i'). But
then, inserting the edge (vs(;,;,t:) separates vy () ; from t;, which means the
bulk-query will return ”false” as desired. (See Figure 44.)

All in all, the update corresponds to p deletions and p insertions, and the
query corresponds to at most p insertions, p queries, and p deletions. From
Lemma 6.1, we obtain a lower bound of Q(lg(n)) for the maximum of delete-,
insert-, and query time, in a data structure which maintains a planar embedding

49

as described.

6.2 Reduction to planarity testing

Planarity testing of a dynamic graph supports the operations delete, insert, and
query. Delete is as before, insert simply inserts an edge (u,v), no corners or
face is specified. The query operation returns a boolean for whether an edge
may be inserted without violating the planarity of the graph. (That is, if any
embedding of the graph exists where the edge would fit.) The operations delete,
insert, and query take time t4,1;, ¢4, respectively.

Theorem 6.3. For maintaining an embedding of a dynamic planar graph with n
vertices, there is a lower bound max{t;,tq4,tqs} = Q(lg(n)), which holds regardless
of amortisation and randomisation.

. —.

Nev

p.p j ty

Figure 45: An edge from T to L is added to the construction. Once an edge
from some v; ; to some t, is inserted, we have a subgraph which is a subdivision
of a 3-connected graph, which means the embedding is unique up to reflection.

Proof. The same bound holds for general planarity testing of graphs, and almost
the same construction can be used: Add the edge (T, L). (See Figure 45). Now
in this setting, one doesn’t need to specify in which corner edges are inserted.
But upon a bulk-query, as soon as the first edge is inserted (v1,5,¢x(1)), we have
a subgraph which is a subdivision of a three-connected graph, which means its
embedding is unique up to reflection. But then the argument from before for
why this returns true iff ¥ = ¥, still holds. From this it follows that Q(lg(n))
is also a lower bound for the slowest operation for planarity testing of a graph
with n vertices. O

7 Conclusion and future work

We have described a data structure for planarity testing of dynamic planar
embedded graphs, which supports updates and queries in polylogarithmic time,

50

O(lg(n)?), and which allows for a flip operation which alters the embedding,
also in polylogarithmic time, O(Ig(n)?). The data structure allows for the user
to cut vertices through two given corners, and reversely, to join vertices.

The algorithm uses top-trees and relies on an elegant observation about
the Euler Tours of the primal and that of the dual tree in the tree-co-tree
decomposition of the planar graph.

The lower bound for the dynamic planarity problem has been raised from
Q(lg(n)/1glg(n)) to Q(1g(n)) per operation using the set-up defined by Patragcu.

7.1 Adding functionalities to the data structure

A natural functionality to enrich our data structure with, are ones to facilitate
queries for the classical properties of bi-connectivity or 2-edge connectivity.

The data structure can easily be modified to support a minimum spanning
forest as the primal forest. The only differences are upon insertion and dele-
tion of edges. When an edge is deleted, we should not choose an arbitrary
replacement edge, but one of minimum weight. The dual top-tree can maintain
the minimum weight edge of any cluster path (using the techniques described in
[18]), which means that when we expose the two faces adjacent to the edge to be
deleted, we know exactly which replacement edge to use, as it is on the exposed
path in the dual tree. The join in the dual tree may then be of one path with an
other, and not only of a path with a leaf like now, but this is well-supported by
the vertex join operation in the top-tree data structure. Upon edge insertion,
an edge may have to leave the primal spanning tree and enter the co-tree, but
this is also well-supported by the data structure.

Since our data structure is relevant in circuit design and graph drawing,
maintaining dynamic minimum cycle basis would be relevant. Given a graph, a
set of cycles, C forms a cycle basis, if any cycle in the graph is the xor of some
Cy...CeC,and no C € C is the xor of cycles in C \ C. The number of cycles
in a static graph is a constant (m — n + ¢ for a graph with m edges, n vertices,
and ¢ components). If the graph is weighted, a minimum cycle basis is one
of minimum weight. If weights may be both positive and negative, the static
problem is NP complete, but if weights are positive, polynomial time solutions
exist. Minimum cycle basis for a static planar graph is studied by Borradaile,
Sankowski, and Wulff-Nilsen in [3]. Maintaining a minimum cycle basis of a
dynamic planar graph is equivalent to maintaining the Gomory-Hu tree for the
dual graph. And thus, our dynamic tree-co-tree decomposition may be of use.

An other interesting question is: Given two vertices which do not share a
common face, is it possible to connect them after having altered the embedding
with only one flip? And which flip would that be? How many flips would be
needed? Is it possible to connect them after only one edge deletion? Which
edge?

Finally, it would be very interesting to work on general planarity testing
of dynamic graphs, and a hope is that this data structure can be used as a
sub-routine in a more efficient data structure for planarity testing.

o1

References

[1]

Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Tho-
rup. Maintaining information in fully-dynamic trees with top trees. CoRR,
¢s.DS/0310065, 2003.

Stephen Alstrup, Jens Peter Secher, and Maz Spork. Optimal on-line decre-
mental connectivity in trees. IPL, 64:64-4, 1997.

Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. Min
st-cut oracle for planar graphs with near-linear preprocessing time. CoRR,
abs/1003.1320, 2010.

Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing.
In Foundations of Computer Science, 1989., 30th Annual Symposium on,
pages 436-441. IEEE, 1989.

Giuseppe Di Battista and Roberto Tamassia. On-line graph algorithms
with spqr-trees. In Automata, Languages and Programming, pages 598
611. Springer Berlin Heidelberg, 1990.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
Sparsification - a technique for speeding up dynamic graph algorithms. J.
ACM, 44(5):669-696, September 1997.

Greg N. Frederickson. Data structures for on-line updating of minimum
spanning trees. In Proceedings of the fifteenth annual ACM symposium
on Theory of computing, STOC ’83, pages 252-257, New York, NY, USA,
1983. ACM.

Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. SIAM J. Comput., 26(2):484—
538, April 1997.

Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity
testing with applications. J. ACM, 46:28-91, 1999.

M. R. Henzinger. Fully dynamic biconnectivity in graphs, 1992.

Monika R. Henzinger and Valerie King. Maintaining minimum spanning
trees in dynamic graphs, 1997.

Monika Rauch Henzinger. Improved data structures for fully dynamic bi-
connectivity. In Proc. 26th ACM Symp. Theory of Computing, pages 686—
695, 1997.

Monika Rauch Henzinger and Michael L. Fredman. Lower bounds for fully
dynamic connectivity problems in graphs. Algorithmica, 22(3):351-362,
1998.

92

[14]

[15]

[16]

[17]

[18]

Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connec-
tivity algorithm in polylogarithmic time per operation, 1997.

Monika Rauch Henzinger and Valerie King. Randomized fully dynamic
graph algorithms with polylogarithmic time per operation. JOURNAL OF
THE ACM, 46:516, 1999.

Monika Rauch Henzinger and Han La Poutré. Certificates and fast algo-
rithms for biconnectivity in fully dynamic graphs. In Third Annual Euro-
pean Symposium on Algorithms (ESA‘95, pages 171-184, 1995.

Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to
bound: With applications to fully dynamic graph algorithms. Random
Struct. Algorithms, 11(4):369-379, 1997.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic
deterministic fully-dynamic graph algorithms i: connectivity and minimum
spanning tree. In JOURNAL OF THE ACM, pages 79-89. ACM Press,
1997.

John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM,
21(4):549-568, October 1974.

Giuseppe F. Italiano, Johannes A. La Poutré, and Monika H. Rauch. Fully
dynamic planarity testing in planar embedded graphs, 1993.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph con-
nectivity in polylogarithmic worst case time. In SODA, pages 1131-1142,
2013.

David R. Karger. Random sampling in cut, flow, and network design prob-
lems. In Mathematics of Operations Research, pages 648-657, 1994.

Philip Klein and Shay Mozes. Optimization algorithms for planar graphs,
2014. Book draft. See http://planarity.org/.

Philip N. Klein. Multiple-source shortest paths in planar graphs. In Pro-
ceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’05, pages 146-155, Philadelphia, PA, USA, 2005. Society
for Industrial and Applied Mathematics.

Casimir Kuratowski. Sur le problme des courbes gauches en topologie.
Fundamenta Mathematicae, 15(1):271-283, 1930.

Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing
(preliminary version). In Proceedings of the Twenty-sizth Annual ACM
Symposium on Theory of Computing, STOC *94, pages 706-715, New York,
NY, USA, 1994. ACM.

93

[27]

[35]

[36]

[37]

Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and
Roberto Tamassia. Complexity models for incremental computation. The-
oretical Computer Science, 130(1):203 — 236, 1994.

T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. North-
Holland Mathematics Studies. Elsevier Science, 1988.

Mihai Patrascu. Lower bound techniques for data structures, 2008.

Mihai Patragcu and Erik D. Demaine. Logarithmic lower bounds in the
cell-probe model. SIAM Journal on Computing, 35(4):932-963, 2006. See
also STOC’04, SODA’04.

Mihai Patragcu and Mikkel Thorup. Planning for fast connectivity updates.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’07, pages 263-271, Washington, DC, USA, 2007.
IEEE Computer Society.

Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. Journal of Computer and System Sciences, 26(3):362 — 391, 1983.

Mikkel Thorup. Decremental dynamic connectivity. In Proceedings of the
eighth annual ACM-SIAM symposium on Discrete algorithms, SODA 97,
pages 305-313, Philadelphia, PA, USA, 1997. Society for Industrial and
Applied Mathematics.

Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceed-
ings of the thirty-second annual ACM symposium on Theory of computing,
STOC ’00, pages 343-350, New York, NY, USA, 2000. ACM.

Mikkel Thorup. Fully-dynamic min-cut. In Proceedings of the Thirty-third
Annual ACM Symposium on Theory of Computing, STOC 01, pages 224—
230, New York, NY, USA, 2001. ACM.

W. T. Tutte. How to Draw a Graph. Proceedings of the London Mathe-
matical Society, s3-13(1):743-767, 1963.

K. Wagner. ber eine eigenschaft der ebenen komplexe. Mathematische
Annalen, 114(1):570-590, 1937.

Jeffery Westbrook. Fast incremental planarity testing. In W. Kuich, editor,
Automata, Languages and Programming, volume 623 of Lecture Notes in
Computer Science, pages 342—-353. Springer Berlin Heidelberg, 1992.

Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connec-
tivity. In SODA, pages 1757-1769, 2013.

o4

